
‘Syncing’ Up with the Quinn-Rand-Strogatz
Constant: Hurwitz-Zeta Functions in Non-Linear

Physics

Natalie J. Durgin
Harvey Mudd College

Sofia M. Garcia
DePaul University

Tamara Flournoy
University of Michigan

David H. Bailey∗

Lawrence Berkeley Laboratory

July 2007

Abstract

This work extends the analytical and computational investigation of the
Quinn-Rand-Strogatz (QRS) constants from non-linear physics. The QRS con-
stants (c1, c2, . . . cN) are found in a Winfree oscillator mean-field system used to
examine the transition of coupled oscillators as they lose synchronization. The
constants are part of an asymptotic expansion of a function related to the oscil-
lator synchronization. Previous work used high-precision software packages to
evaluate c1 to 42 decimal-digits, which made it possible to recognize and prove
that c1 was the root of a certain Hurwitz-zeta function. This allowed a value of
c2 to be conjectured in terms of c1. Therefore there is interest in determining
the exact values of these constants to high precision in the hope that general
relationships can be established between the constants and the zeta functions.
Here, we compute the values of the higher order constants (c3, c4) to more than
42-digit precision by extending an algorithm developed by D.H. Bailey, J.M.
Borwein and R.E. Crandall. Several methods for speeding up the computa-
tion are explored and an alternate proof that c1 is the root of a Hurwitz-zeta
function is attempted.

∗Lawrence Berkeley National Laboratory, Berkeley, CA 94720, dhbailey@lbl.gov. Supported in
part by the Director, Office of Computational and Technology Research, Division of Mathematical,
Information, and Computational Sciences of the U.S. Department of Energy, under contract number
DE-AC02-05CH11231.

1

1 Introduction

Synchronization is a common part of everyday life: walking down the street in step
with a friend; a chorus of crickets; fireflies flashing in rhythm. These actions, and
others like them, are ideal for using the Winfree model. The Winfree model consists of
a population of globally coupled phase oscillators, objects with a repeating variation,
with randomly distributed natural frequencies. There are often obstacles that will
momentarily force a group’s synchronization to be lost. The phenomenon of moving
out of sync is called the unlocking transition and is the basis of our research.

In a 2007 paper, Quinn, Rand and Strogatz studied this process using a summa-
tion expression whose roots can be written as an asymptotic expansion in terms of
constants (c1, c2, · · ·). Subsequently Bailey, Borwein and Crandall used high-precision
computer programs to evaluate c1 to 42 decimal-digits [1], and were ultimately above
to recognize c1 as the root of a Hurwitz-zeta function.

In our work we compute high-precision values of the constants (c3, c4), by extend-
ing a computational scheme developed by Bailey, Borwein and Crandall [1]. These
high precision values are provided in the hope that they will lead to a full-fledged
recognition of these constants in terms of analytic functions. Such results might lead,
in turn, to identification of cN for arbitrary integer N . Furthermore, we investigate
alternative analytic and computational methods for finding the constants.

Understanding the unlocking transition serves the interests of scientific fields as
diverse as ecology and physics. For example, these results could conceivably be used
to enhance the effectiveness of pacemakers, which need to work with the natural
rhythms of the human heart. Key to all of this analysis is the Winfree model, which
must be thoroughly understood.

2 Background

We begin our work with a summation describing a nonlinear Winfree-oscillator mean-
field system that is used in [1]

0 =
N∑

i−1

2

√
1− s2

N

(
1− 2

i− 1

N − 1

)2

− 1√
1− s2

N

(
1− 2 i−1

N−1

)2
 , (1)

where N represents the population size being considered in the model. In equation
(1), sN is an N -dependent variable that describes how far in or out of synchronization
a group is, also called the phase offset. To better understand sN , it is the bifurcation
curve between being locked into a synchronization and being incoherent (see fig 2)
[2]. It can be written sN = sin[φ∗0(1)], implicitly defining the angle φ∗0(1), which
measures how synchronized a group is in harmonic oscillation. For example, if we
were to consider a system of two pendulums, φ∗0(1) would represent how closely their
swing patterns were aligned.

After computing values of sN for various N , Quinn, Rand and Strogatz observed

2

that

sN ∼ 1− c1N
−1

for some constant c1 = 0.605443657 . . . (now known as the QRS constant) [2].
These authors wondered if this constant might be given in terms of some compact

analytic formula, so they contacted David Bailey, Jonathan Borwein and Richard
Crandall, who investigated it using methods of experimental mathematics. Because
these tools (such as constant recognition facilities and integer relation algorithms)
often require high-precision values, they first attempted to compute this constant to
higher numerical precision. After some effort (see next section), they were able to
extend this value to 42 digits of precision [1]:

c1 = 0.6054436571967327494789228424472074752208996 . . .

Unfortunately, when Bailey, Borwein and Crandall first attempted to recognize
this constant, they failed. The Inverse Symbolic Calculator, for instance, which is
available at http://oldweb.cecm.sfu.ca/projects/ISC, was unable to find any match.
So these authors explored other avenues. They began by defining, for M = N − 1,

PN(s) :=
M∑

k=0

(
2
√

1− s2(1− 2k/M)2 − 1√
1− s2(1− 2k/M)2

)
.

Then they applied the Poisson summation formula, which for Lebesgue integrable
functions f(x) says that

∞∑
k=−∞

f(k) =
∞∑

n=−∞

∫ ∞

−∞
f(x)e2πinx dx.

When the summation is truncated at finite limits, a related form is

M∑
k=0

f(k) =
∞∑

n=−∞

∫ M+η

−η

f(x)e2πinx dx,

provided η ∈ (0, 1). By setting x = (M/2)(1− (1/s) cos t), they then derived

PN(s) =
∞∑

n=−∞

M

s
eiπnM

∫ π

0

dt
(
1− 2 sin2 t

)
e−πin M

s
cos t

=
M

s

∞∑
n=−∞

eiπnM

∫ π

0

cos (2t) e−πin M
s

cos t dt

=
πM

s

∞∑
n=1

(−1)nMJ2

(
πnM

s

)
,

where J2 is the standard Bessel function of order two.

3

This suggested to the authors that the sought-after zero sN for the QRS problem
is a solution to

0 =
∞∑

n=1

J2

(
πnM

sN

)
(−1)nM .

They noted that J2(z) can be written

J2(z) =

√
2

πz

(
cos(z − 5π/4)− 15

8z
sin(z − 5π/4)

)
+ O

(
z−5/2

)
.

The authors then defined

Qs(z) =
∞∑

n=1

cos(πnz − 5π/4)

ns

= − 1√
2

{
∞∑

n=1

cos(πnz)

ns
+

∞∑
n=1

sin(πnz)

ns

}
,

= − 1√
2

(
Re Lis

(
eiπz
)

+ Im Lis
(
eiπz
))

.

After additional manipulation, they were able to show that

Q1/2(z) = − 1√
2

ζ(1/2, z/2),

where ζ(·, ·) is the Hurwitz zeta function: ζ(s, a) =
∑

n≥0(n+a)−s. In summary, they
concluded that sN is the unique zero in (0, 2) of the function ζ(1/2, z/2).

It should be emphasized, however, that the above derivation, which we have only
briefly sketched, when first carried out by Bailey, Borwein and Crandall, was entirely
conjectural and heuristic in nature—indeed, a rigorous treatment (which was pro-
duced after-the-fact) occupies eight pages in their paper [1]. But the fact that the
end product of their derivation agreed to 42-digit accuracy with the numerical value
they had earlier computed was compelling evidence that they were on the right track.

Bailey, Borwein and Crandall continued their analysis, noting that most likely c1

was merely the first coefficient of an asymptotic expansion

sN = 1− c1/N + c2/N
2 − c3/N

3 · · · .

After a similar process of computational and analysis, they found c2 to be

c2 = c1 − c2
1 − 30

ζ(−1
2
, 1

2
c1)

ζ(3
2
, 1

2
c1)

.

4

0.2 0.4 0.6 0.8 1.0

-0.5

0.5

1.0

0.92 0.94 0.96 0.98 1.00

-0.6

-0.4

-0.2

0.2

0.4

Figure 1: These graphs depict our summation with N = 5, 50 and 500. The graph on the
left has been zoomed in to emphasize what occurs as s nears 1. From these graphs it is
easy to see that our summation becomes more singular as we approach our root.

3 Computational Approach

Building from the algorithm and values produced by Bailey, Borwein and Crandall,
we try to recreate and extend the computational and analytical understanding of
this problem[1]. To that end we must find the roots of equation (1), and to do so
computationally we employ an iterative root solver. Our sum includes a square root
and as such it will be very expensive, even initially, to compute for large values of N .
Thus we must be even more mindful of the cost of our computations, especially when
selecting a root solving method. Since calculating the derivative of the function at
each iterative step is so expensive, we did not use Newton’s method even though this
process would yield quadratic convergence. Instead, we choose the secant method as
it requires only one initial derivative be computed to generate a second iterate, then
the slope through the previous two points approximates the derivative instead using
the following

x1 = x0 −
f(x0)

f ′(x0)

xn+1 = xn −
xn − xn−1

f(xn)− f(xn−1)
f(xn)

This method is a close second to Newton’s method in speed, with a convergence rate
of the golden ratio, approximately 1.62. To better approximate c1 we also use the
Richardson extrapolation method.

Richardson’s method works by building a lower triangular matrix putting the
converged value from the secant method into the first column of the matrix. The
next row takes the converged value again for the first column and then uses the
equation

Am,k =
2kAm,k−1 − Am−1,k−1

2k − 1

to populate the rest of the matrix. The Richardson extrapolation works because when

5

c1 is evaluated in our equation by substituting in for s such that

0 =
N∑

i−1

2

√
1− (1− c̃1)2(1− 2

i− 1

N − 1
)2 − 1√

1− (1− c̃1)2(1− 2 i−1
N−1

)2

 (2)

the c̃1 that is calculated is actually

c̃1 = N(1− sn)− c2

N
− c3

N2
− c4

N3
· · ·

A linear transformation is performed at every column of each row to eliminate the
error of c2, c3 . . . terms one at a time until the error is minimal. Finally, in the last
row and column of our matrix we are left with the best approximation for our c1

value.
Another important aspect of our C++ code is the implementation of the ”qd real”

variable types. By using the qd package, or quad-double, package roughly 63 decimal
digits can be stored accurately as opposed to the usual 16 provided by double type
variables. Once our C++ code had been properly linked to high precision libraries
and packages, we could begin computing c1 after assigning a few constant variables.

N is defined as N := 4NMax, with NMax = 1, 2, · · · , 15[1]. We consider NMax
with these parameters as NMax = 15 sufficiently balances the time of computation
needed and the precision with which values can be derived, at least 42 digits. Our
tolerance that will define convergence for the secant method is set to 10−52, and our
initial guess for c1 is set to 0.6. Using this method we are able to compute c1 in about
60 hours of computing time with

c1 = 0.60544365719673274947892284244720747522089949695632261

We then change our sn equation by substituting in our computed value for c1 and
extend sn such that our summation now reads

0 =
N∑

i=1

2

√
1− (1− c1N − c̃2)2

(
1− 2

i− 1

N − 1

)2

− 1√
1− (1− c1N − c̃2)2

(
1− 2 i−1

N−1

)2
(3)

Also we update our initial guess to −0.104, as this seemed appropriate from the
values derived in[1]. While the computation for c2 was underway we used a standard
algebraic manipulation programs to calculate low precision values for c3 and c4. After
about 60 hours of computation c2 was evaluated to be

c2 = −0.104685459433071176262158436583950361566306188422928,

which matched the value computed by Bailey, Borwein and Crandall exactly (to the
precision shown).

Confident in our code we then updated our algorithm to calculate c3, again slightly
altering our original code including changing the initial guess to 0.126. During the
computing time for c3 we recognized that our summation is symmetric and as such we

6

could cut the amount of terms to be summed in half and later multiply by 2 to get the
same results in less time. How this is was determined is shown in our computational
results below. We alter our code to include this and found computations needed
about 4x less time to run than it had before. With this improvement we are able to
calculate c3 to be

c3 = 0.12631433612303666530616702052847758228073642787157869896

in about 14 hours. With an initial guess of -0.0134, c4 was calculated in 14 hours to
be

c4 = −0.015937625178713939538299708463506509021108497772210531402.

We also conjecture that even more computing time could be saved by using a
method described in our conclusion. It would be expected that this would eliminate
another 1

4
of our computation time. Unfortunately, as a result of the time limitations

of our program we were unable to incorporate this into our code to provide real data
results of how this will affect our time.

3.1 Computational Results

As N increases, the sum in equation (1) becomes more expensive to compute. We
explore how the sum evolves as N increases. Let a function β(µ) be defined as follows,

β(µ) = 2
√

1− µs2 − 1√
1− µs2

,

where µ := 1− 2(i− 1)/(N − 1). We examine the behavior of µ as N increases.

µ i → · · ·
N 0 1 2 3 4 5

↓ 1 12

12
12

12

2 22

22 0 22

22

3 32

32
12

32
12

32
32

32

4 42

42
22

42 0 22

42
42

42

5 52

52
32

52
12

52
12

52
32

52
52

52

...

.

This exercise reveals an exciting symmetric pattern. Now we can rewrite µ =
(N − 2i)2 /N2 and write the original equation in terms of β(µ),

σ(s, N) =
N∑

i=0

β(µ),

In this form, it is easy to see that the QRS equation is an even function, and it is
therefore equivalent to sum only half the terms and multiply by two.

σ(s, N) = 2

bN/2c∑
i=0

β(µ).

This is a very exciting observation as it cuts the time for computing the sum.

7

3.2 Analytical Results

Using the intuition gained by computational analysis, we now explore the asymptotic
behavior of the QRS equation. As a result of equation (1) is a function of both s
and N , characterizing the asymptotic behavior, our task of finding a closed form
expression for the sum is made more challenging. Quinn, Rand and Strogatz used
the Euler Maclaurin Summation formula, a generalization of the trapezoid rule, to
approximate this integral [1]. We outline the approach here. Letting M := N − 1, we
reindex equation [?], and write it as follows,

f(i) :=
M∑
i=0

2

√
1− s2(1− 2

i− 1

M
)2 − 1√

1− s2(1− 2 i−1
M

)2

 (4)

Further rescaling, let h := 1
M

and xi = ih. Now xi becomes a variable over which we
can integrate,

f(xi) =
M∑
i=0

(
2
√

1− s2(1− 2xi)2 − 1√
1− s2(1− 2si)2

)
. (5)

Now we can write our sum in the form of the trapezoid rule, with h as our step size.
As M increases the better our integral approximation becomes

hσ(s, M) = h
M∑
i=0

f(xi) = h

[
1

2
f(x0) + f(x1) + . . . + f(M − 1) +

1

2
f(M)

]
+

1

2
h [f(x0) + f(xM)] .

Finally, using the Euler-Maclaurin summation formula,

hσ(s, M) =

∫ 1

0

f(x)dx +
∞∑

k=0

B2k

(2k)!
[f (2k−1)(1)− f (2k−1)(0)], (6)

were Bk is the kth Bernoulli number. Integrating f(x) we obtain,

hσ(s, M) =
√

1− s2 + h

(
2
√

1− s2 − 1√
1− s2

)
+

∞∑
k=0

B2k

(2k)!
[f (2k−1)(1)− f (2k−1)(0)](7)

Quinn, Rand and Strogatz noted that this Euler-Maclaurin formula works but begins
to diverge just where it must be applied in our problem[1]. This is because with every
derivation of this equation the root in the denominator of equation (4) becomes more
and more singular.

Choosing to explore this formula further, we turn our attention to the last portion
of equation (7). Finding a closed form expression for the (2k− 1)’th derivative would
be favorable. Exploring the patterns in the derivatives of f(x), it is possible to obtain
an expression for an arbitrary derivative. Consider equation (5) and let

f(x) = 2g0(x) + g1(x). (8)

8

The closed form was found to be,

g
(m)
k =

m−1
2∑

l=0

Π
m+1

2
j=1−l

(
−m

2
+ j − k

)
als

m+2l+1(1− 2x)1+2lgm+1
2

+l+k, (9)

where m is the order of the derivative, k is either 0 or 1 as shown in (8), and al is
the constant coefficient that we conjecture to be al = 22m

Solving for the general case we find that g0(1) → 0 and does not contribute to the
sum. Focusing now on rewriting the entire general case equation we make necessary
changes, our equation now reads

0 = 2− c−1
1 −

∞∑
d=1

B2d

(2d)!
22(2d−1)

[
Πd

j=1−d

(
−1

2
− d− j

)]
c−1
1

22d−1
(10)

= 2− c−1
1 −

∞∑
d=1

B2d(4d + 1)!

(2d)!2

(
c−1
1

2

)2

d. (11)

Although we had hoped that this derivation would lead to an alternate proof that
c1 was the root of (2), we have found that the limit of our general equation above
does not converge as we had thought it would. We hope that this line of reasoning
will be continued.

4 Conclusions and Future Work

To improve our C++ code we would suggest We have found our research to be very
delicate but equally exciting. After generating c1 through c5 we have yet to recognize
a pattern in the numbers. We do hope that our values will help continue work on
this topic as well as our derived equation (11), and algorithm improving techniques.

5 Acknowledgements

This work was supported by National Security Agency (NSA) grant H98230-07-1-
0084 and also received funding from the host institution The Mathematical Sciences
Research Institute (MSRI). The authors would like to thank Dr. David H. Bailey for
his patient introduction to the problem and his support throughout their research.
The instruction provided by Dr. Ricardo Cortez and Douglas Varela is greatly appre-
ciated as it helped to inspire many of their analytic explorations. Thank you also to
Dr. Juan Meza for his computation tips, critiques and encouragement. The authors
would also lke to extend a thank you to the graduate student TA’s, Tamara Flourney
and Edgar Lobaton.

References

[1] D.H. Bailey, J.M. Borwein & R.E. Crandall Resolution of the Quinn-Rand-
Strogatz constant of nonlinear physics, unpublished, 1–18, 2007.

9

[2] D. Quinn, R. Rand & S. Strogatz , Singular unlocking transition in the Winfree
model of coupled oscillators, Phys. Rev., 75, 036218-1-10, 2007.

10

